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BIFURCATION IN THE DUFFING EQUATION

WITH INDEPENDENT PARAMETERS , II

Snopsis: In a previous paper, the authors gave a complete

• description of the number of even harmonic solutions of Duff ing ’s

equation without damping for the parameters varying in a f u l l

neighborhood of the origin in the parameter space. In this paper,

the analysis is extended to the case of an independent small

damping term . It is also shown that all solutions of the undamped

equation are even functions of time.

1. Introduction.

Consider the Duff ing equation with damping ,

2d u  du 3
• + U = p

1
u + at — p2

u + p3 cost (1.1)

where p = (p1,p2,p3,p4) is a real four dimensional vector vary ing

in a neighborhood U of the origin. Our objective is to discuss

the 2rr—periodic solutions of Equation (1.1) for each p in a

sufficiently small neighborhood U. In a previous paper [21, the

authors gave a complete description of the number of solutions

for the undamped case, p4 
= 0, under the hypothesis that the solu-

tions were continuous in p3 
and even in t. The hypothesis of

evenness made it possible to reduce the discussion to a single bi-

furcation equation. When the damping term is present, such an

• hypothesis is meaningless and , therefore, two bifurcation equations

must ~e considered. A complete analysis is possible after one has

exploited the symmetry properties in Equation (1.1) to obtain
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• detailed qualitative properties of the bifurcation equation. This

• latter information is also used to show that all 2ii—periodic solu-

tions of the undamped equation are even in t. The analysis in

the present paper is in the same spirit as in [2] and uses ideas

from [1], [3].

2. The Bifurcation Equations.

Consider the system:

4 + u_ p 1u + p 2u
3 o. (2.1)

A 2ir-periodic solution continuous in p3,p4 is a continuous

function from a deleted neighborhood V - {(O,O)} (depending on

of 0 into the space of 2ir—periodic functions which

associates to each (p1,p2) c V 
— {(O,O)} a 2ir—periodic solution

u(p1,p2,p3,p4) (t) of Equation (1.1). Furthermore, the set

{u(p1,p2,p3,p4), (p3,p4) c V 
— {(O,O)}}, with the uniform topology,

H is precompact and every limit point of this set as (p3,p4) 
-
~ 0

is a 2TT—periodic solution of (2.1).

The idea for considering this particular type of continuous

dependence on the parameters came for a paper of Hale and Taboas [4]

in the consideration of 2ii-periodic solutions of another type of

equation. This definition is more general than the one considered

by the authors in [21.

Since we are only interested in solutions of this form, it is

necessary to discuss some detailed properties of the solutions of

(2.1).
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• • The ncessary information is contained in the following lemma,

whose proof was given in [2].

Lemma 2.1. There is a constant k > 0 and a neighborhood U in

~~

2 
~~ ~~~~~~ 

= (0,0) such that a nonconstant 2ir-periodic solu-

• tion u of (2.1) exists for (p1,p2
) c U if and only if p1p2 > 0,

this solution is unique except for a phase sh i f t  and sat isf ies

I u ( t )  J < k j p 1/p 2 ! ”2 .

-~~ -~~ ~p1,p2~ c U and either p1p2 < 0, p2 
> 0 or p1 ~ 

p2 
= 0,

the only 2~ —periodic solution of (2.1) is u = 0. If p1p2 ~ 0,

< 0, there are the 2ff—periodic solution u = 0,

• 
u = ±[(l—p1)/Ip 2I]~

”2. 
~~~~~~ ~~~~~ 

= 0, p2 
= 0, every solution of

• (2.1) is 2ir—periodic.

For p2 < 0 , there are always two 27r-periodic solutions of

Equation (1.1) which exist for p = (p1,p21p 3,p4) c in a

neighborhood of zero and coincide with ±[(l-p1/1p 2 I ] h/’2 for

p3 
= p4 

= 0. This is proved in the same manner as in [2] and is

stated precisely in the following lemma.

• Lemma 2.2. There is a neighborhood U in .
~~~~~~~ of p = 0 and

that for even p c U, p2 < 0, there exist two 2ir-periodic solutions

of Equation (1.1) which are continuous in (p 3,p4) and coincide

with ± I ( 1— p 1) / 1p 2 I ]~~
2 for p3 

= p4 
= 0. All other such 271—

periodic solutions of Equation (1.1) for p3 = p4 
= 0 must

• coincide with the solution u = 0 of Equation (2.1) or a nonconstant
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periodic solution of Equation (2.1).

To obtain the other 271—periodic solutions of Equation (1.1)

continuous in (p3,p4), let p2 > 0, u = vp2~~
2 in Equation (2.1)

• to obtain the equation

2
~$+ v= p1

v + p 4~~~~ - v + a c o s t  (2.2)

where a = P~~
2
Py From Lemma 2.1, we know that pV2u is

bounded and, furthermore, that the only 271—periodic solutions of

Equation (2.2) that need to be considered are those for which v

is small. If p2 < 0, the same remark is true (of course, with

—v3 replaced by tv3) provided the two solutions in Lemma 2.2

are excluded from the discussion.

We now discuss 271—periodic solutions of Equation (2.2) for

(v,p11 a,p4) in a small neighborhood of the origin. The procedure

• will be the classical one used in [2] to obtain the bifurcation

equations. Any 271—periodic solution of Equation (2.2) for p1 
=

p4 = a = 0 must be equal to r cos(t—~ ) + 0(r2) for some con—

stants r,~~. Therefore, by letting t -* t + q , we will obtain

4 a solution of our problem by considering the 271-periodic solutions

of the equation

+ v = p
1
v + p4 

— V
3 

+ a cost (t+~ ) (2 .3 )

2
which for p1 

= p4 = a = 0 are equal to r cost + 0(r ) .

Let 9~= {h:.~ -~~~~~ : h is continuous h (t+271) = h(t)} and

~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~
• •

~~~~~~~ 
•
~~~~~~~~

•
~~~~~~~~~~~~~~~~~~~~~~~~~

• • . • • ~~~~~~~~~~~~~~~~~~~
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• for any h C ~9, let Ih i = s u p l h ( t ) I .  Let P: 9+ .9 be the

projection defined by

1 1 r 271
• (Ph) (t) = cost J h (s)cos s ds + — sint h(s)sin s ds. (2.4)

• 0

For any h c 9, the equation

d2v (2.5)
dt

has a solution in .9 if and only if Ph = 0. Furthermore, there

is a continuous linear operator K: (i—P) .9 -
~~ (I-P).9 such that

K(I—P)h is the unique solution of

(I—P)h (2.6)

which satisfies PK(I—P)h = 0; that is, K(I—P)h is simply the

271-periodic solution of Equation (2 .5)  which does not contain cost ,

sint in its Fourier series. To this solution K(I—P)h, one can

add an arbitrary linear combination of sint and cost to obtain the

general solution of Equation (2.6). As remarked earlier, it is

only necessary for us to add a term r cost.

If r is fixed and we define

= {h c P: (Ph) (t) = r cost) ,

• 
f(v ,p1,p 4 ) = p1v + p4 — v3

— • —--~~-•~~~~~~~~~~~ • • • • —- • .~-~~~~~~~~~~~~ • •  —------~~~ • • ~~~ -—- -•- -- -- —- — • • -~~~~~~~~~~ -- • -- •— • — • • • -~~--~~
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then v is a solution of Equation (2.3) in 
~r 

if and only if

v = r cost + w, W C ( I— P )9  ( 2 . 7 a )

4 + w = ( I — P ) f ( r  cos (~~) + w,p1,p4) (2 . 7 b )

P[f(r cos(.) + w,p1,p4) + a cos(•+q)] = 0 (2.7c)

since (I—P)cos(.+~ ) =

By an application of the Implicit Function Theorem , there are

6 > 0, C > 0, such that , for J r~ < 5 , ~p~~j + I~4I < e , there is

a unique solution w*(r ,p1,p4) of Equation (2.7b) in (I—P)9 ,

the function w*(r,p1,p4) is analytic in r ,p11p 4 and

w*(O,p1,p4) = 0. Furthermore, it is very easy to see that

w*(r ,p1,O) is an even function of t since v = r cost + w and

only powers of v occur on the right hand side of Equation (2.7b)

for p4 =0 .

Since w*(r ,p 1,p4) is uniquely determined it follows that there

is a solution v = r cost + w C of Equation (2.3) which lies in

a sufficiently small neighborhood of zero if and only if

v = r cost + w*(r,p1,p4) and (r, 4 , p1,a,p4) satisfy the bi~furca—

tion equations

P f f ( r  cos (~~) + w*(r,p1,p4), p1,p4) ÷ a cos( + q ) ]  = 0.

From the definition of P in Equation (2.4), these latter equations

are equivalent to the system of equations 

•
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271
H • G1Cr,4 , p1,a,p4) a cos 

~~ 
+ 

~~~

- Jo f ( r  cost + w*(r,p1,p4) (t) ,p1,p4)cost dt = 0

271
G2(r,p,p11a,p4) 

d~f a sin q + 
~ J f ( r  cost + w*(r ,p1,p4) (t) ,p1,p4 ) sint dt = 0.

Since w*(r,p1,0) is an even function, it is clear that

G2(r,4,p1,a,
O) = a sin 4 .  For w* (r ,p11p 4 ) = 0 , it is easy to

evaluate the above integrals. If this computation is made and

one uses the Taylor series to obtain the order estimate 0(Ip 1rj ÷

3 *I p~ri + In ) on w (r,p1,p4), the bifurcation equations become

G1
(r,4,p1,a,p4) = a cos r~ + p1r 

— ~-r
3 4 rg1(r,p1,p4

) = 0 (2.8a)

• G2 (r ,q , p1,a,p4 ) = a sin q + p4r + p4rg2(r,p1,p4) = 0 ( 2 . 8 b )

where

g1(r,p1,p4) = O(~p1~
2 
÷ 1p 4 1 2 

+ 1p1p41 ÷ r
2
1p11 + r2jp4~ + r

4)

(2.9)
g2 (r,p1 ,p4) = OCr2 + J p1 I + I I ) .

ii

These results are summarized in the following lemma.

Lemma 2 . 3 .  There is a neighb~~ hood U C of (r ,p 1, a ,p 4 ) = 0

and a neighborhood V C .9 of v = 0 such that Equation (2.3)

has a solution v C 
~r 

n V for (r ,p1,a ,p 4 ) c U and a given ~

if and only if (r,p1,a,p4,q) satisfy the bifurcation Equations

(2.8) where g1,g2 satisfy (2.9).

- --~~~~~~~~~- - _ ~~~~~~-•-•— • • _
~~~~~~~~~—._•-.- - - • • - • • _
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• An immediate corollary is the following result on the undamped

Duff ing equation.

• Corollary 2.1. There is a neighborhood u C ~~~~~~~~ of (p1,a) = 0

• and a neighborhood V C.9 of v = 0 such that the only 271-periodic

.9 solutions in V of the undamped Duf f  ing equation

• d2v 3 +acost (2.10)
at

are even functions of t if a ~ 0.

Proof. For p4 
= 0, the second bifurcation Equation (2.8b) is

a sin 4 = 0. Therefore, if a ~ 0, we must have c~ = 0. If

= 0, then v(t) = r cost + w*(r,p1,0) (t) is an even solution of

Equation (2.10). Since all solutions of Equation (2.10) can be

obtained from Equation (2.3) and the Lemma 2.3, we have proved the

• desired result.

fl~ Remark 2.1. The conclusion of Corollary 2.1 is also valid for the

1 equation

• ~±~v + v . p v _ v 3 + af (t)

ii r 271
1.1 where f(t) is even in t and f(t) cost dt = 71. To prove

.10

this , one considers the same equation with t replaced by t + ~

and observes that the bifurcation equation obtained by projecting

onto sint has the form a(sin q)h(r, 4 , p1) = 0 with h(0 , 4 , 0) = 1.

~~~~~~~~--~~~~~~~ ———•-,
~~~~~~~~~~ •~~ - — • -  •. •— -~~_‘—~~~~~~•••— --—-• - —-— —•• - •~~~ —-



r~~ ~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~ -~~~~~ - -
~~~~~~~~~-~~~~~~~~~-~~~~~~~-=-~~~~~~~~~~ 

-

P 1

—9 —

One can now repeat the same argument as in the proof of Corollary

2.1 to complete the proof.

3. Analysis of the Bifurcation Equations.

In this section, we analyze the bifurcation Equations (2.8)

for (r,cp ) and deter~ ine the surfaces (bifurcation surf aces) in
• the parameter space across which the number of solutions (r,q))

changes. If the number of solutions is to change at some point

in the parameter space, then there must be a multiple root (r,~~)

of Equations (2.8) at these values of the parameters; that is,

= 0. Our objective, therefore is to obtain the

• values of the parameters at which multiple solutions of Equations

(2 .8)  occur . Basic to the investigation is the following a priori

estimate.

Lemma 3.1. There is a neighborhood U C ~~ of the point

(r,p1,a,p4) = (0,0,0,0) and a constant c such that all solutions

(r,4) of Equations ( 2 . 8 )  with (r ,p1, a ,p 4 ) C U satisfy

I n ~ c ( I p 1I V2 
+ I a [ ’~

3 
+

Proof. If this is not the case, then there is a sequence

with (r n ,p1n~ an~
p4n ) + (0 , 0 , 0 , 0) as n -

~~

such that

1/2 1/3 1/2

~~ln ’ I a n I ~4n
+ 0, + 0 0,r r ‘ r

n n n

F •~~~~~~~~~~ - ~~~~~~~~-~~~~ •~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-- ~~~ ••— -• . —•~~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~ -~~~~~~~~ —-- - • —
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as n + ~~. Dividing the Equation (2.8a) by r~ and letting n +

• this implies that 0 = - .
~~ , which is a contradiction. This proves

the lemma.

Lemma 3.1 justifies the scaling

r = a~~
3p, p1 

= pa 2
~

3 , p4 =

in Equations (2.8). Making this change of variables and dividing

the equation by a , one obtains the equivalent equations for a ~ 0.

def pp — 
~~~

- p 3 + cos ~ + p0 (a2~
’3) = 0

G2 
d~f 6 p + sin ~ + 6p (a 2~~) 0.

For (p,a,6) = (0,0,0), these equations only have the solution

(p ,q ~) = ( (~.)
l/3,o) Fur thermore ,

~ 9(4~ l/3• I — —I—I  0

________  —_ _ _ _ _ _ _ _  — L 0 1

at these points. The Implicit Function Theorem implies there are

> 0 and a > 1 such that Equations ( 2 . 8 )  have uni que solutions

near the points (p,~~) above for I d  < c~ , p 1 3 ÷ ~ 1/a.
Therefore , in the origina l variables (p1, a,p4), no bi furcation

occurs in the region

= {(p1,a,p4): a! < C0, I p 1I 3 
+ 1p 4 1 3 

< a 2/a}

_ _  _
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This implies that the bifurcation surfaces in an c0 neighborhood

• of (p11a,p4) = 0 must be in the region

R
a,c 

= {(p1,a,p4): p~ 
+ p

~ < c~ , a
2 

< a(1p 11
3 

+ Ip 4 1
3)}.

In the region

= R
a,c 

fl {(p1, a,p4) :  p4 > 0, Jp 1f ~

the scaling

• r = pp, p4 = p
2 p1 = np

2
, a = vp3, n e [—1,1], lv i < c* (1 +

leads to the new bifurcation equations

— 3 3  2G1 
= np - p + v cos ~ + pO (p ) = 0

(3.1)
= 
~ ÷ v sin ~ 

+ p0 (p 2) = 0.

For ~ = 0, one obtains directly from Equation (3.1) that

A d
~~~ d t 1 2

[(
9 2 ) ~

for any solution (p ,~~) of ( 3 . 1 ) .  Since n 2 
< 1, the only solution

of ~ = 0 is p = 0. But this implies v = 0 which implies the

Equation (2 . 3) is autonomous. For this situation , we know Equa tion

• I (2.3) has only the solution v = 0 for any p4 > 0. Therefore, no

• •

~

•

~

•

~ 

•• •~~~~~~~~~~~~~~~~~ • •~~~~~~~~~~~~~~~~~~ • ~~~~~~~ -•- .
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bifurcation occurs in R1.

One can make a simIl~r analysis in the region

R fl { (pl ,a ,p A ) :  PA < 0, IP , I < — P A } and arrive at the same
• 

a,c0 ~ . 
-± .~. 

—

conclusion .

• Consider now the region

• = Ra,c 
fl (p1, ci,p4) :  p1 < 0, I P 4 I < —p1).

If we use the scaling r = ~~~~, ~ 
= _~~

2
, a = vp 3, p4 = mp2,

Im i ~ 1’ l v i < c* (1 + Im I ) the bifurcation equations become

= — 
~~ P

3 
+ V cos ~ ÷ 

0(p2)

= mp + V sin ~ ÷ 0(u
2)

and, at p = 0,

________ 9 2 3 2 2
det 3 (~~~~ ) 

= p[— (l + ~~
- m ) (1 + 

~~
- p ) — m ] .

This quantity is zero only if p = 0. With an aigument

similar to the one for R1, one observes there is no bifurcation

at this point.

Let us now analyze the region

R3 = Ra,C 
fl {(p1,a,p4): p1 > 0, l~ 4l < p1).

For the scaling 

—~——•--_-••-—-••- --••_-—-_•-•- —• -— -_ • - • • .— —-—•— •—• • •— ———-
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r = pp , p1 = p
2, a = vp 3, p4 = mp

2, Im i ~ 1, I v l < c x ( 1  + Im I )

the bifurcation equations bec3me

G1 = P — 
•4

~ 
P
3 + V cos 

~ 
+ p0 (p2) = 0

(3.2)

G2 = v sin + mp + mp0(ji2) =

• Recall that we need only cons ider these equations for m l  ~ 1,

I v I  < a(l + I m I )  and p small. Therefore , p will be in a
1/3bounded set, I~ I < 2c (l+a ) .  The corresponding determinant of

the Jacobian matrix is given by

9 2  2
i i — — p  + 0(p ) — v sin 4

— ~(G1,G2)A = det = det 
2

• m + m O (p ) v cos 4

= V~I~1 — 
9 

2) cos ~ 
+ m sin ~ + 0(p 2~~ .

• For v ~ 0 (i.e. a ~ 0), the multiple solutions of our scaledI,
bifurcation equations are the solutions of the three equations

h1~~~~~~ p — ~~ - p 3 + v c o s ~~~~= p O ( p 2 )

• h2 
d2f mp + v sin q = mp0(~

2) (3.3)

• h3 
d~f (1 — .

~~
- p2)cos 4 + in sin q = 0(p 2).
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The outline of the program is now as follows.

Treating p as a parameter, we determine q , V ,m as functions

of p such that Equations (3. 3) for p = 0 are satisfied. If

• det ~(h1,h2,h3)/3 (q,v,m) ~ 0, then we can determine solutions of

Equations (3.3) for p sufficiently small. Elimination of the

parameter p from the resulting solutions v*(p,p), m*(p,p) will

give the possible bifurcation surfaces v as a function of m ,

or perhaps m as a function of v ,p .  We then ver i fy  tha t the

number of solutions (p,q) of Equations (3.2) [or equivalently,

the number of solutions (r,~ ) of Equation (2.8)1 changes by two

as this surface is crossed. This proves that it is a bifurcation

surface.

If h1 = h
2 

= h
3 

= 0 , p = 0 then

3 21 - i-P -Incot (s) in 
= 9 2 (3.4)

1 4 p

and so

in
2 

= {.
~ 

p2 — 
i) {i 

— 
3 

2] (3.5)

also, h1 = h
2 

= 0 fur ther implies

= 

~1 ~~
- p2 — i)

2 
+ m2p2 (3.6)

Equations (3,4), (3.5), (3.6) are the parametric forms of the

solutions $,m,v as functions of p if we substitute Equation (3.5)

into Equations (3.4) and (3,6). Eliminating p from Equation (3.5),

~~~— •-~~~S _  S
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(3.6), we have

= [1 + 9m2 ± (1—3m 2)3’2]. (3.7)

The locus of the points in the (v ,m) plane described by Equation

(3.7) are plotted in Figure 1.

If

= det

then

9 2  . 2
sin ~ — p 

~- p  — ljcos • sin ~ — m p cos ~~~~.

As remarked earlier, if A1 ~ 0 at a solution (~ 0,m0,v01p 0) of

h1 = h
2 

= h
3 

= 0, then we can obtain a solution (~ ,m,v) of

• Equations (3.3) for Ip— p 01 and l u l sufficiently small by

employing the Implicit Function Theorem.

If h1 h2 h3 0, then

= _2m/~ (2±/l_3m
2)

2and A = 0 implies in = 0 since m < 1. If in = 0 , then

(v2,p2,~ ) = (16/81, 4/9, 0) or (0, 4/3, 71/2).

Therefore, at each solution (401m0,v 0,p0) of h1 = h
2 

= h
3 

= 0

for which (v0,m0) ~ (±4/9 ,0) or (0,0), there is an c > 0 and

unique solutions ~~p,p),m(p,p)v(p,p) of Equations (3.3) for
k I

• ~~~~~. • S •• • •  • •  S -. -- • • • •~~~~~
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I p—p 01 , li i i < C , ~ (p0,O) = p0, m (p0,O) = in
0
, v (p 0, O) = V

0
. Thus ,

if we exclude a neighborhood V of the points (±4/9 ,0) and (0,0)

in the (v ,m) plane , then we can find a p 0 > 0 such that the

Equations (3.3) can be uniquely solved for (V ,m,V) as functions

• of (p,p) for ~~ < p0 and I~ I < 2c(1+a1”3), the a priori bound

on p. Elimination of p from the corresponding functions m,v

gives part of the surface indicated in Figure 2 in terms of the

unscaled variables (p1,a,p4). The first approximation to the

explicit formula for this surface is obtained from the scaling and

Equation (3.7) and is given by

a
2 

= + 9p1p~ ± (p2 — 3p 2 ) 3/2] (3.8)

At the points (V,m) = (±4/9 ,0) in the (V ,m) plane where

= 0, we compute another Jacobian and apply the implicit function

H theorem. At these points and for (p,q,) = (±2/3 ,0), we see that

a(h1,h2,h3)
A 2 

= det 
~(p,m,v) 

—2 ~ 0.

Therefore, we can solve the Equations (3.3) for p,m ,v as functions

of ~,p for 
~
,p suff ic iently small. Eliminating the parameter

~ gives the bifurcation surface near the points (±4/9 ,0).

At the point (v ,m) = (0,0), the corresponding solutions (p,4)

of h1 = h2 = h
3 

= 0 is (±2//L Tr/2). If we let v = am , then the

bifurcation equations are

- •  • • • - • • - • • - • • S- t~~~~~~—— ~~~~_• ——•---- --— •—-———— -— -~~ — - — - • •- -_ - •- ••
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= p —~~
p 3 + am cos 4, = 0 ( p 2

)

h. 
2

• j~~~= p + a s i n 4 , = 0 ( p ) .

For (p,4,) either of the above points, we have h2/m = 0

• implies a = ±2//i. We wish to determine the multiple solutions

of Equation (3.9). The analysis proceeds as before. If

A = det 3(h11h2/m)/3 (p,4)

then

A = cx (1—9p 2/4)cos 4, + am sin 4,.

We now consider the equations h1 = 0, h2/m = 0, A = 0 as defining

functions p,zn,c* as functions of 4. Along the solution of these

equations , we have

9 (h ,h2/m,A ) 4det 1 
± — 

~~~ 0.
3/~

Therefore, we can find functions m(4,,p), a (4,p) and p (4,p)

that will satisfy the Equations (3.9) for p close to zero and 4,

• close to 71/2. Eliminating 4, from the functions m(4,p) and

ct ( 4 , p )  completes the discussion of the possible bifurcation surface

shown in Figure 2.

• It remains to show that the surface in Figure 2 is the bifurcation

surface, that is, we must show that the number of solutions (p,4) 
S

_ _ _ _ _ _  _ _ __ _ _ _  _  _ _ _  _ 
j
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of Equations (2.8) changes as this surface is crossed. However,

we need not check all points on the surface. It is sufficient,

for example, to show that the number of solutions changes as we

cross the surface in the plane p4 
= 0 since the only possible

• J 

way for the number of solutions to change is to pass through a

multiple solution. For p4 = 0, Corollary 2.1 implies all solu-

tions for a = 0 , p1 > 0 and one solution for p1 = 0 , a ~ 0.

Therefore, the surface in Figure 2 is a bifurcation surface with

the number of solutions as indicated.

For p2 < 0, one can make a similar analysis as above to obtain

the corresponding bifurcation surface lying below the (a ,p4)

plane. Of course, one has two more periodic solutions in each

region as a result of Lemma 2.2. We do not draw the surface in

this case.

We suzmnarize these results in the following theorem.

Theorem 3.1. Let a = p
~
’
~~
p3. There is a •neighborhood u in

of (0,0,0) such that the bifurcation surface r for Equation (1.1)

with (p1,a,p4) C U is depicted in Figure 2 and the surface for

> 0 is approximately given by Equation (3.8). The number of

271—periodic solutions of Equation (1.1) at a point (p 1, a ,p 4 ) c U

which are continuous in (p 3,p4) is shown in Figure 2.

Remark 3.1. The results of this paper are easily extended to the

equation

. + u p u + p du ...pu 3 +p f(t)
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S provided that f(t) is an even function of t and
S 

ç271
f(t)cost dt = 71. One uses the same type of analysis together

• .10
S

I 
with Remark 2.1.
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